
ıntroductory guide to video game
design and development for social
challenges with

"Scratch"

1
introduction 5

Training overview 6
Checklist to prepare a workshop 7

2
uSe your iMagination! 9

3
Create your story 11

4
introduction to scratcH 15

Character Creation 20
Animations 23

Collisions and Objects 26
Dialogues 33

5
final tipS for trainErs 39

The European Commission's support for the production of this publication does
not constitute an endorsement of the contents, which reflect the views only
of the authors, and the Commission cannot be held responsible for any use

which may be made of the information contained therein.

About the Project:

"Access –Social Space Orientation in Youth Work 4.0" is supported by the
European Union under the Erasmus+ program. The project addresses the
limited participation opportunities for young disadvantaged people and
develops intervention models along the three focal points of the EU Youth
Strategy –inclusion, sustainability, and the digital world. In Berlin, Vienna,
and Valencia, project tandems, consisting of youth work practitioners and
experts in inclusion, sustainability, and digitalization, explore educational and
participatory offerings for three selectively chosen target groups.

In Valencia, the Access Case Study endeavoured to cultivate a digitally
inclusive society rooted in European values such as human dignity, freedom,
democracy, equality, and the rule of law. This initiative empowers young
citizens, particularly those from low-income areas, to exercise their rights
and freedoms while influencing domains beyond their local communities.
Participants are equipped with the tools to enjoy freedom, social protection,
and equitable access to resources, ensuring that no one is left behind.
Aligned with Europe's Digital Decade objectives, these young individuals
are encouraged to acquire essential digital skills and leverage everyday
technology to shape their future prospects in employment, education,
training, and social integration.

www.bisev-berlin.de www.suedwind.at

www.bgz-berlin.de

www.vhs.at www.musol.org www.fvmp.org

Netzwerk
für betriebliche Integration
und Sozialforschung e.V.

Scratch1 Introduction

54

introduction

Welcome to the guide on integrating environmental and social
themes into video game development!

Through this guide, the steps to create a prototype of a simple
video game with the Scratch game engine are explained. This guide
aims to be a pedagogical tool that allows trainers to address envi-
ronmental and social challenges in their classrooms through video
game programming. The functioning of the Scratch game engine is
explained, and the steps to follow in order to develop a basic video
game in six sessions are detailed. Designed to be used by an audi-
ence with no previous experience in video game programming, this
guide features simple language and visual materials support. It can
be used in classrooms to collaboratively develop, with an attractive
and innovative tool - Scratch - video games that address challenges
related to the Sustainable Development Goals while promoting stu-
dents' technological and digital skills.

Join us as the student embark on this exciting journey of crea-
tivity, empathy, and digital innovation. Together, the student will har-
ness the power of video games to inspire change and foster mean-
ingful connections within our communities.

Scratch1 Introduction

76

training overviEw
In the first class, it will be conducted a collective dynamic with
the students to identify and discuss the existing challenges in
the neighbourhood. Next, the students will select the environ-
mental or social themes to be addressed in the video games.
The trainerwill introduce the students to narrative in a brief and
concise manner so that students can develop the story of their
choice at home. The trainerwill propose that students create the
narrative design of the game themselves: what do they want to
convey? Video games progress through Quests (missions); the
trainerwill create a main Quest with a very basic structure:

1)	 A character asks for our help and gives us an im-
portant mission. To do this, students must create
this character narratively, decide who he/she is,
his/her needs, how to express him/herself, and
write down a dialogue.

2)	 The main character must fulfil the mission (there
will be no narrative contribution as this is the
playable part).

3)	 The main character will complete the mission and
then speak again with the initial character to con-
clude the story. Students will have to create this
ending story on their own. With these three simple
steps, students will be able to add depth to their
video game through narrative, giving each project
a different personality. As this is a project focused
on development and programming, the students
themselves must develop the dialogues along-
side the tasks, keeping in mind the story they want
to tell and writing them at the end of the project.
This is an ongoing background task throughout
the course where students' ideas will be heard
and doubts resolved.

checklist to prEpare
a Workshop

From the Scratch website:

1)	 Download Scratch: Start here:
https://scratch.mit.edu/scratch_1.4

2)	 Read the Scratch introductory guide:
https://sip.scratch.mit.edu/scratchathome/

3)	 See Scratch introduction videos:
https://scratch.mit.edu/projects/
editor/?tutorial=getStarted

4)	 Make sure participants have Scratch

accounts: Participants can sign up
for their own Scratch accounts at:
https://scratch.mit.edu,
or you can set up student accounts
if you have a traineraccount. To request
a traineraccount, go to:
https://scratch.mit.edu/educators

5)	 Set up computers or laptops Arrange
computers so that participants can work
individually or in pairs.

6)	 Set up a computer with projector or large
monitor You can use a projector to show
examples and demonstrate how to get
started.

Scratch1 Introduction

98

use your
iMagination!

In the first class, the trainerwill conduct a collective dynamic with the
students to identify and discuss the existing challenges in the neigh-
bourhood. Next, the trainerwill select the environmental or social
themes to be addressed in the students' video games. The trainerwill
introduce the students to narrative in a brief and concise manner so
that they can develop the story they want to tell at home. The train-
erwill propose them to create the narrative design of the game them-
selves: What do they want to convey?

In our first class, the trainerwill embark on a collaborative jour-
ney with the students to explore and dissect the challenges pres-
ent in their neighbourhood. By engaging in collective dynamics, the
traineraims to uncover the pressing issues that resonate within their
community.

Following this exploration, the trainerwill carefully select envi-
ronmental or social themes to serve as the focal point for the stu-
dents' video game projects. These themes will not only spark creativ-
ity but also prompt critical reflection on the world around them.

As the trainerdelves deeper into the creative process, the train-
erwill introduce students to the art of narrative storytelling. Through
brief yet concise guidance, students will be empowered to craft com-
pelling narratives that drive the gameplay experience. Encouraged
to explore their own voices and perspectives, students will shape the
direction and message of their games, conveying the stories they are
passionate about.

Scratch1 Introduction

1110

Create your
story

Video games progress through Quests (missions); the student will
create a main Quest with a very basic structure:

1)	 A character asks for our help and gives us an important mission.
To do this, they must create this character narratively, decide
who they are, their needs, how they express themselves, if the
student know them previously, and write down their words.

2)	 The main character must fulfil the mission (there will be no nar-
rative contribution as this is the playable part).

3)	 The mail character will complete the mission and then speak
again with the initial character to conclude the story. Students
will have to create this ending story on their own.

With these three simple steps, students will be able to infuse
their video game with narrative, imparting distinct personality to
each of the projects. As this is a project centred on development and
programming, it is the students themselves who must develop the
dialogues alongside their tasks, keeping in mind the story they want
to tell and writing them at the end of the project. This is an underly-
ing task that will be carried out throughout the course, during which
students' ideas will be heard, and any doubts resolved.

For those who are interested, a brief explanation of the hero's
journey will be provided, and they will be recommended to read
Joseph Campbell's book "The Hero with a Thousand Faces," as well
as search for related information online to enhance their stories.
Scriptwriting, character creation, and storytelling are important as-
pects of the video game industry that do not require significant re-
sources to develop. While this aspect will not actively be part of the
course, it is relevant information that may motivate some students.

3 Create your Story

1312

Scratch

The hero’s journey:

https://www.jcf.org/learn/
joseph-campbell-heros-journey

the hero's journey

adventure
call to

he
lp

er
te

st
s

helpers

elixir

flight

Return

Resurrection

Rescue

Threshold
Struggle

1) Sacred Marriage
2) Father Atonement
3) Apotheosis
4) Elixir Thieft

Threshold Crossing

Brother-Battle

Dragon-Battle

Dismemberment

Crucifixion

Abduction

Night-Sea Journey

Wonder Journey

Whale's Belly

thereshold

of adventure

Copyright 2008, Joseph Campbell Foundation (JCF.org)

Scratch1 Introduction

1514

In order to start working on the project, students will first need to
understand how Scratch works and what elements it has. To do this,
students will go to the official Scratch page where, at the top along-
side the logo, students will click the "create" button to create a new
project and will familiarize ourselves with the interface, keeping it in
English since if students want to continue exploring, he/she will use
the standard language.

introduction
to Scratch

the code editor

1716

4 Introduction to Scratch Scratch

On the left side, it contains all the blocks we will use to
program the project's code. These blocks are simple instruc-
tions that we will combine to make our game work. We will ex-
plain them in detail later on.

On the right side, it is used to manage the graphical part
of the project. The top part is the window where we can see
the game while the bottom part is the list of all the sprites (2D
images) of the project, where we can rename them or change
their position, rotation, and scale.

Sprites are any type of actor (interactable elements) that
we can include in the game, each with its own programming code.

These can range from characters to boxes or any type of
playable element in the project. Finally, next to the list of sprites
is the list of backdrops. A backdrop is the background on which
we place the elements of the game, which can also have its
own programming code, although we will only use it for aes-
thetic purposes to create the stage background.

Lastly, in the central part, there is the workspace where
we will place the blocks (mentioned earlier) to program our
game. The programming seen here is for the sprite or backdrop
that we have selected at that moment.

In addition to these three panels, in the upper left corner,
students can see that there are also three tabs. Everything stu-
dents have seen so far is within the "Code" tab, which is the one
the student will use the most.

The next one, "Costumes" or "Backdrop", is used to
change the appearance of the sprite or backdrop that the stu-
dent have selected. From here, the student can modify the
visual appearance of all the elements of the project. Mainly, the
student will use it to animate or decorate the background. The
student will see how to work in-depth with this editor later on.

The last tab is "Sounds", which is used to edit the sounds
of the project. Since the student are creating a prototype, the
student won't need to work with it.

block types

In the "Code" tab, we have several colored dots, each
dot representing a type of block. Let's proceed to explain them:

Motion (dark blue): This category manages the char-
acter's movement, allowing us to modify or understand things
like its rotation or displacement.

Looks (purple): It allows us to manage the appearance
of the character. Here, we can include dialogues, change the
size of the character, add some effects, and even animate it.

Sounds (mauve): These blocks are used to execute and
modify sounds, although we won't use them for this project.

Events (yellow): This category defines when things hap-
pen, such as what happens when you press a key, when the
game starts, etc. It is one of the ones we will use the most, al-
though we will try to keep it as simple as possible.

Control (orange): These blocks are closer to typical
programming, although we will also try to use them in the
simplest way possible. With this, we can manage everything
that happens in our code, making it repeat other instructions
several times, deciding whether to execute one set of instruc-
tions or another, etc.

Sensing (light blue): With this, we can know what is
happening within the game, such as if the character is touching
another element of the scene, or what keys we are pressing at
that moment. It may sound similar to "Events", but we will see
the differences as we apply it.

Operators (Green): This part is also closely related to
typical programming and may be a bit more complicated to
use than others. It allows for logical comparisons and mathe-
matical operations.

Variables (Dark Orange): Here we can create and edit
the variables of our project. Variables are all the information
we want to store, such as how many coins our character has
collected, how much health is left, etc.

My Blocks (pink): "My Blocks", we can create our own
blocks to reuse code. If there are pieces of code that we will
repeat many times, we can turn it into a single pink block to
make it easier for us to work. In programming, this is known
as "functions". It is similar to "Events", although we will see the
differences as we work with both. In programming these are
known as “functions”. It is similar to “Events”, although we will
see the differences when working with both.

With this knowledge in mind, we start designing our
prototype.

Sprite Editor

1918

4 Introduction to Scratch Scratch

programming the basic movement

Before going any further, it is convenient to look at a
practical example of how to program in Scratch. To do this, the
student will make the Scratch pet move in a very basic way,
he/she will face some problems that may arise and the stu-
dent will understand why some blocks are used instead others.
The first thing to do is to extract the necessary material from
the blocks divided by colored balls that have been mentioned
before and drag it to the central area of the project. The stu-
dent will start with the yellow ball "events", then he/she will
add the yellow box (these boxes are called blocks) that says

"When [-----] key pressed" in the space where there are now
hyphens. A drop-down menu can be expanded and select the
option "When [right arrow] key pressed" then with the sprite of
the selected character the student adds the motion blocks

"Change X by [2]" and puts it right under the previous block. Now
if you press the right key, the cat moves in that direction. The
student can change the number to edit the speed at which it
moves. It looks like he/she could use the "Move Steps" block,
but this will make the character always move in the direction
he's facing, which doesn't suit us for this project. The problem
with using "When [right arrow] key pressed" is that if you press
that key it will always move, whether you want it to or not. It is
more convenient for us to separate when the student starts the
game and when it ends, so that all the programming, such as
the controls, works only while playing.

The student switches tasks, deletes the previous blocks,
and places the "When Green Flag Clicked" event. This event
is activated when the student presses the green flag on the
game screen, marking the start of the game. If he/she presses
the red signal, the game stops, stopping the code from running.

Next, place the "Forever" control block. It's a slightly
different box, whatever the student puts in it will be executed
continuously, many times per second.

Inside "Forever", the student place the control blocks "If
[] then", inside this new node the student will add as before the
motion blocks "Change X by [2]". This checks a condition, and if
it is met then the character moves.

As the student can see, the boxes have shapes that
connect to each other, to add the condition the student have
just mentioned he/she must add the sensing blocks "key []
pressed?", which has a hexagonal shape, and he/she must in-
troduce it into the hexagon inside the box "If [] then" leaving "if
[right arrow] pressed".

Really, block programming is like writing orders. Looking
at this the student can read that when starting the game, it con-
tinuously checks if the right key is pressed, and if so it moves
the character in that direction. The student can repeat this pro-
cess by duplicating the blocks within "Forever", this time puts
ting the left arrow, and changing the speed by the same num-
ber in negative, so that it moves to the left.

Extract the necessary material from the blocks Block programming

2120

4 Introduction to Scratch Scratch

charactEr creation
The student have two different tools to design our charac-

ter, both equally valid: pixeldudesmaker and pixel art rpg char-
acter creator. Each has its own style and parameters for editing
the character, and includes an option to create it randomly.

Now the student can have fun for a while trying out the
different options and creating the character the student like
the most. Once the student has the character, export it ("ex-
port: sprite" for pixeldudesmaker and "export/save" for Pixel Art
Character Creator). This will create a sprite sheet, which is an
image with all the animations of the character.

To import the character and its animations into Scratch
the student will have to chop up that sprite sheet, so that he/
she have each image of the animation separately. Ezgif.com
allows the student to do it easily. Within the "Split" section is
the "Sprite Sheet Cutter" tab, where he/she can drag our sprite
sheet to chop it up.

After uploading the image and pressing "Upload", the
student will access the image editor. He/she selects the "by
columns/rows" method and puts the number of "columns and
rows" that our image has so that it crops it correctly.

Make sure that the chosen format is PNG, click on "Cut!"
and save it as a ZIP. When unzipping the images (with 7zip or
similar) it is advisable to make folders and save the two anima-
tions that are going to be use in them.

1)	 Idle (images 5-8 for pixeldudesmaker, and 7-10
for Pixel Art Character Creator): Animation for
when the character does not move.

2)	 Walk (images 9-12 for pixeldudesmaker, and 1-6
for Pixel Art Character Creator): Animation for
when the character moves.

importing the character

Within Scratch, at the bottom right where the list of
Sprites and Backdrops is, there is a drop-down that allows to
import the sprites.

The student imports the first image of the idle animation,
which will create the sprite of his/her character. Now, in the

"costumes" tab the student can find the same drop-down menu
for import at the bottom left, and import the rest of the images
from the idle.

To make it easier to work with, the student renames the
first image of the idle to "Idle-1", and so on with all of them.

The student now takes the opportunity to import the im-
ages from the walk animation, and rename them in the same way.

With the character already imported, the student drags
the code he/she created in the previous class for the Scratch
character on the character's sprite to copy the code. Once
done with this, he/she can now delete the Scratch cat to work
only with the elements of our project.

Creating the character

https://edermunizz.itch.io/pixel-art-rpg-character-creator
https://edermunizz.itch.io/pixel-art-rpg-character-creator
https://ezgif.com/sprite-cutter

2322

4 Introduction to Scratch Scratch

aniMations
Since there are four motion inputs, one for each direction, but
the student want the character do the walk animation in all of
them, he/she is going to create a different block to not repeat
the same code all the time.

Create a block in the "My Blocks" section. the student
can rename it Walk_Anim, and the student is going to enable
the bottom tab to run without screen refresh (this automatically
creates a block called "define [Walk_Anim]" that we'll use later).

The student add this new block inside each of the "If []
then " control blocks at the end of the code.

But in order to manage the animation, you'll have to
know if the character was already walking

or not, so within the "Variables" section the student cre-
ate one, just for this sprite, which the student will call "Current
Costume". You can remove the tick that is in the list of variables
so as not to view it on the game screen.

This variable represents which image the character now
has, out of all the ones we've imported. Usually it is wanted to
always start still when the user starts the game, so under the
motion blocks “set rotation style [left-right]" can be placed an-
other variable block, "set [Current Costume] to [0]", and another
looks, "switch costume to [idle 1]".

Import the sprites Animation of the character

2524

4 Introduction to Scratch Scratch

The most intuitive way to approach animations would be
with an "if [] then", checking if the character was already doing
the walking animation, so if so, it continues, and if not, it starts
from the beginning.

But it is going to be used a mathematical formula to cal-
culate it automatically, improving the performance of the pro-
ject. The student will need the "switch costume to []"looks, the

"Current Costume" variable, and the operator blocks "[] + []",
"floor of []" (you can puts ABS instead of floor or similar since it
is a drop-down menu) and "[] mod []". The set of blocks would
be something that:

"Switch Costume to [[5] + [[floor of [Current Costume]]
mod [6]]]"

5 is the image in which the walking animation begins,
and 6 is the number of images that It has that animation, as it
goes from 5 to 10. All of this can be seen in the "Costumes" tab.

"Floor" eliminates the decimals, while "mod" makes sure
that the first number the student enter never exceeds the sec-
ond, and finally he/she is going to use "Current Costume" to
calculate the advance of time.

Once placed these blocks under the "define [Walk_
Anim]" (which was automatically created before), then has to
be introduced at the end of the code previously created inside

"forever" the variable block "Change [Current Costume] by
[0.5]". With this last number can be chosen the speed at which
the animations have to go.

The student can also create the Idle animation. To do
this the student will create from "My Blocks" a block called
Idle_Anim, again he/she will make it run without image refresh.
When defining it, the student have to check if the character is
not moving, in order to execute the animation. To do this, the
student will puts a control block "If [] then", and in the tester
(the diamond between if and then) the student will puts an op-
erator block "not []", and inside the space of the "not []", a sens-
ing block "key [any] pressed?" (In any you can puts space or
another word since it's a drop-down menu.) The student puts s
them together so that the block looks like:

"If [not[key [any] pressed] then"

Inside this "If [] then " the student puts s the same opera-
tion he/she did for the walking animation, changing the values
of the start image and the number of images that the idle ani-
mation has, so that it looks like this:

"Switch Costume to [[1] + [[floor of [Current Costume]]
mod [4]]]"

Walking animation The Idle animation

2726

4 Introduction to Scratch Scratch

colliSions and objEcts
properly starting the character

To make it easier to modify the character's speed, we're going
to create just for this sprite a variable that we'll call "Speed".
After the initialize events the student puts the variable block
"set [speed] to [2]", and in each blocks "change x by[]" and
"change y by []" that the student puts for the move, in those
gaps "[]" the student puts this variable speed, next to the oper-
ator block multiplication, "[] * []". In the up and right movement
the student will multiply Speed by 1, and in the left and down
the student will multiply Speed by -1.

In addition, it is convenient to puts after the event of
starting the game the blocks looks "show", "switch backdrop to
[floor_tiles]" and "go to [front] layer". This way the student make
sure that the student start on the map it touches on and that
the character will always be visible.

It is also advisable to puts behind these blocks when
starting the game the motion blocks"go to x [] y []", where the
student will puts the coordinates where the student want our
character to always start.

redo character movement

Right now, the character can walk through the walls of
the stage. To avoid this, it has to be created a collision so that
he/she can crash into them.

Start by creating another block from "My Blocks", also
without screen refresh, called Movement, but this time we'll add
one of the options offered by Scratch "add and inputs, number
or text". These two inputs s will be called "dx" and "dy", and they
represent the speed of the character on each of the axes.

We're going to replace the "Change X by []" blocks that
the student used for the movement with this new "Movement"
block that we've created. The value the student used, the
blocks"[Speed] * [1]" for the right movement and "[Speed] * [-1]"
for left, the student puts them in the first entry of the Movement
blocks, and in the second the student puts a 0. For example,
for the movement to the right it would look like this:

"Movement [[Speed]*[1]] [0]"

This is because the student will make the first value the
speed with which he/she moves on the axis horizontally, and
the second with which the student move vertically. Now the stu-
dent repeat the process to replace the "Change Y by []" blocks
that the student have used for vertical movement, by puts ting
their value in the second entry of the "Movement"blocks, leav-
ing the first as 0. For example, this time the upward movement
would look like this: "Movement [0] [[Speed]*[1]]".

Modify the character's speed Create a collision

2928

4 Introduction to Scratch Scratch

With this the student are grouping the movement of the
character in a single box. In principle, it forces us to calculate the
movement in a slightly more complicated way, but it will help us
manage collisions. Next, the student creates two variables just
for this Sprite, which we'll call "X" and "Y". With them, the student
will mark the position of the character at all times. Under the ini-
tialize events the student will puts the variable blocks "Set X to [
]" and "Set Y to []", and assign them the

Now going back to the block Defines "Movement [dx]
[dy]". The student can drag the "dx" and "dy" inputs s to be able
to work with them, which represent the values the student ap-
ply each time the student have used this block. Let's define it by
placing the block of movement “go to x [] y []”.

What the student want to do is add the movement to the
character's current position, and update it. To do this, within the
new block the student will add the "[]+[]" of operations in both
slots and the student will use our variables "X" and "Y" (respec-
tively) to occupy the first slot of the new operations box, and the
student will add the entries of "dx" and "dy (respectively) that oc-
cupied the second slot of that box. The result would be some-
thing like: "go to x[[X]+[dx]] y[[Y]]+[dy]]" Next to this the student puts
the variable block "Change [X] by[]", and as a parameter in the
gap the student add "dx", just below it the student puts the varia-
ble block "Change [Y] by[]", and as a parameter "dy".

With all this the student can see that the movement of the
character feels exactly the same as it did before, with the differ-
ence that the student has unified it within a single block that the
student can easily edit.

character collision

Now that the student has unified the movement, the stu-
dent is going to make the character stop when hitting the walls
of our map. Between the “go to x [] and []” and “Change [X] by[
]” blocks of the movement, the student place control block “If
[] then”, as a parameter in the space the student enter sensing
block “Touching [Map]?”, to execute inside the if the character
touches our map sprite.

Inside of the if the student are going to introduce mo-
tion block “go to x [] and []”, and the student assign our

Variable “X” and the and the variable “And”, and follow-
ing the control block “ Stop [this Script]”. With this the student
make it so that when hitting the walls our character does not
advance, and stops moving.

But if our character carries a sword or any other element, it
will collide. To avoid this the student are going to create a Collider,
which will be the only part of the character that collides with
everything. Within the Costumes tab, the student duplicates the
first image of the Idle and drag it to the end of the image list.

The student creates a rectangle above it that occupies
the size that the student wants it to collide with things, and the
student erase all the excess parts of the character around it
with the eraser. The student will call this image Collider.

To apply it, in the code defines “Movement [dx] [dy]”,
the student puts before the rest a block looks “Switch Costume
to [Collider].” What this does is puts the image of the collision
to calculate when it hits the environment, and automatically
change it to the one the student wants it to be seen, so fast that
the student does not even notice.

Unified movements within a single block The character stops when hitting the walls

3130

4 Introduction to Scratch Scratch

objects

Now that our character has collision, he/she will be
able to interact with other elements of the environment. For
the environment the student is going to take elements from
Dungeon Tileset II.

The student searches among its files for the coin_anim, a
coin, and import it, along with all the images for its animation, as
the student already did with the character. The student gives it a
scale of 120 to adjust it to the size of the game.

The currency will also start working when you start the
game, so the student added an event block “When Green Flag
Clicked.” The student creates a variable only for this sprite called

“Current Costume”, and under the event of starting the game the
student puts the variable block “set [Current Costume] to [0]”,
and block looks “switch costume to [coin_anim_f1]” and “Show”.
Next the student puts a control block "Forever".

Now in “My Blocks” The student create a block called
“Idle Anim”, without a screen refresh, and place it inside the for-
ever. Following the “Idle Anim” the student puts the variable
block “change [Current Costume] by [0.2]” to say how fast the
animation is going.

Now inside the define block “Idle Anim” the student puts
the same series of blocks that the student already did with the
character, with the appropriate values for the start image and the
number of animation images, being something like this:

“Switch Costume to [[1] + [[floor of [Current Costume]]
mod [4]]]”

.

As the student can see, the same thing the student did
for the character works for any animated element.

To manage animations, you will always have to repeat
the same process.

The student only has to implement what happens when
the character picks it up. The student creates a variable for all
sprites called “Coin Amount”. It is convenient for us to deacti-
vate the tick of the rest of the variables, also of our character,
and leave only this one active, to be able to see at all times the
amount of coins the student has.

Inside of the block “Forever”, above the other two, the
student puts a block “If [] then”, and how verification the stu-
dent puts a sensing block “is touching [character]?” Inside the
if the student puts the block. “Change [Coin Amount] by [1]”,
from block looks “Hide”, and of control “Stop [this Script]”. With
this the student make it so that if the character touches it, the
amount of his coins’ increases, the student hide this coin so that
it cannot be seen, and the student make it stop being able to
be picked up again.

Finally, to make sure that our character always starts
without coins, the student go back to his code and under the
event of starting the game the student puts the variable block

“Set [Coin Amount] to [0].

Interact with other elements of the environment Manage objects animations

https://0x72.itch.io/dungeontileset-ii

3332

4 Introduction to Scratch Scratch

dialogueS
use dialog blocks

Scratch has a very integrated dialogue system, making
it very easy to apply. A direct and simple example is, returning
to our character code, puts ting other block“If [] then” inside
the “Forever”, to which this time the student add the condition
sensing“ is [spacebar] pressed?” Inside that “if” the student puts
the block looks “think [] for [2] seconds”, to which the student
can puts the text that the student want the character to think
when pressing the space bar.

The student can also have the character say something
when picking up an object. For that the student add to the char-
acter code an event block “When I Receive [message].” Instead
of message the student creates a new event, which the stu-
dent will call “PC_Pick_Item”. Now, below this event the student
place the block “think [] for [2] seconds”, with the text that the
student want the character to think when picking up the object.

Now from the currency code, the student adds the
event block “Broadcast [PC_Pick_Item] right above where the
student placed the block “Stop [this Script]”.

Manage objects animations

Apply dialogues

3534

4 Introduction to Scratch Scratch

non-player characters

Now that the student knows how the basic dialogue
blocks work, the student can create other characters that inter-
act with ours. The student imports a new character with its idle
animation, which the student will call NPC. This can be created
with the pixeldudesmaker or the Pixel Art Character Creator, or
you can also choose one of the ones in the Dungeon Tileset II.

As with our main character, the student created the vari-
able “Current Costume” only for this sprite, and the student add
the event “When Green Flag Clicked”, followed by block “Set
[Current Costume] to [0]”, and block looks “Switch Costume
to [idle_0]” and “Show”, from motion block “Set Rotation Style
[left-right]” and “Forever”.

The student believes in my block “Idle_Anim” without
screen refresh. In the definition of this block the student would
puts the animation formula, whose values will depend on our
idle animation:

“Switch Costume to [[1] + [[floor of [Current Costume]]
mod [4]]]”

Now the student puts inside the “Forever” our block
“Idle_Anim”, and the variable block “Change

[Current Costume] by [0.15]”.
With this the student have the NPC with its animation,

now the student wants to make it interact with our character.
For that, inside the “Forever”, after the blocks that the student
already have, the student puts a block “If [] then”, and how con-
dition the student puts “Touching [Character]?”

With this we have the NPC with its animation, now we
want to make it interact with our character. For that, inside the

“Forever”, after the blocks that we already have, we put a block
“If [] then”, and how condition we put “Touching [Character]?”

In this way it will react when the student approach it. The
next thing the student want is that if the student carries objects
with us, receive them and give us a message, and if the student
does not have them, ask us for them with a different message.

For that, inside that “If [] then” the student puts another
control block, “If [] then else”. This does that if the condition is
met, execute a piece of code, and if not execute a different one.
As condition the student puts “[Coin Amount] > [0]”, using our
variable “Coin Amount”.

Within the first part of this “If [] then else” the student
puts variable block “Change [Coin Amount] by [-1]”, and looks

“Say [] for [4] Seconds”, where the NPC will be grateful that the
student have given the object.

In the second part of this “If [] then else”, which happens
when the student don't have any objects, the student puts only
the block looks “Say [] for [2] Seconds”, where the NPC will ask
us to go look for the object.

The student already has the NPC working, his only prob-
lem is that the student can walk over him. The student is going
to try to make their collision faster and easier, since this NPC is
not going to move from the site.

Creation of other characters that interact with the main character Create a message from the other characters

3736

4 Introduction to Scratch Scratch

Where the characters are in the lower right frame of
the screen, the student click on the cat-shaped icon and se-
lect paint. The student creates a new sprite that is a rectangle
slightly smaller than NPC (the student will see in real time how
it looks on the game map, the student must make it fit over the
NPC), which the student will call NPC_Collider. Ideally this col-
lision would have to be centred in the image editor so that it is
easier for us to work with it.

The student places it on the map above the NPC to
see that it fits correctly. Now, the student will create the NPC_
Collider code by adding the block “When Green Flag Clicked”,
and below blocks looks “Go to [Back] Layer”, and “Set [Ghost]
Effect to [100]”. This way it will be there, but it will not be visible.

Now for this collision to affect our character, the student
returns to the Character code. Where the student defined the
block “Movement [dx] [dy]” the student see the verification
from “If [] then” which was “touching [Map] ?”. Let's add the op-
erator “[] or []” to check if it touches the NPC collision as well,
so that it would be:

“[Touching [Map] ?] or [Touching [NPC_Collider] ?]”

Collision with another character that asks for an object

2 Purpose of the Workbook and How to Use It

3938

Scratch

final tipS for
trainers

In conclusion, as a trainer, it's essential to allocate time to provide
clear instructions and ensure that everyone is following along at each
step of the way. Offer support to any student encountering difficulty,
fostering an environment of inclusive learning.

Scratch serves as an excellent tool for experimentation, en-
abling students to explore various programming approaches with
ease. This flexibility is particularly beneficial; it allows advanced stu-
dents to forge ahead and explore independently.

As the session draws to a close, encourage participants to
showcase their projects to their peers. Prompt them with questions
to stimulate reflection: What observations did you make while test-
ing the games? What creative ideas might the student incorporate
into his/her own project?

Above all, aim to cultivate a sense of enjoyment and fulfilment
during the sessions. Encourage students to create their Scratch ac-
counts, empowering them to continue their game development jour-
ney beyond the classroom walls. By embracing curiosity and perse-
verance, each student can unleash their creativity and thrive in the
world of programming.

2 Purpose of the Workbook and How to Use It

4140

Scratch

Bibliography

Olcina, Beatriz, Guía de iniciación al diseño
y desarrollo de videojuegos en Scratch,
Fundación MUSOL, 2023.

Scratch.mit.edu, “Scratch para educators”,
https://resources.scratch.mit.edu/www/
guides/en/EducatorGuidesAll.pdf (last
consultation on june 2024)

https://resources.scratch.mit.edu/www/guides/en/EducatorGuidesAll.pdf
https://resources.scratch.mit.edu/www/guides/en/EducatorGuidesAll.pdf

Publisher
BIS Netzwerk für betriebliche Integration
und Sozialforschung e.V. (BIS), Gesellschaft
für duales Lernen gGmbH (GDLB)

www.bisev-berlin.de
www.access-youth.eu

Project partners
BGZ Berliner Gesellschaft für internationale
Zusammenarbeit mbH, Südwind - Verein für
Entwicklungspolitik und globale Gerechtigkeit
(Südwind), Die Wiener Volkshochschulen GmbH
(VHS), Fundación MUSOL (Musol), Federació
Valenciana de Municipis I Províncies (FVMP)

Authors
Fundación MUSOL and Federació Valenciana
de Municipis / Províncies

Donors
European Union – Erasmus+ programme

Graphics
Copyright © 2024 Scratch Foundation

Valencia, 2024

www.bisev-berlin.de www.suedwind.at

www.bgz-berlin.de

www.vhs.at www.musol.org www.fvmp.org

Netzwerk
für betriebliche Integration
und Sozialforschung e.V.

www.access-youth.eu

